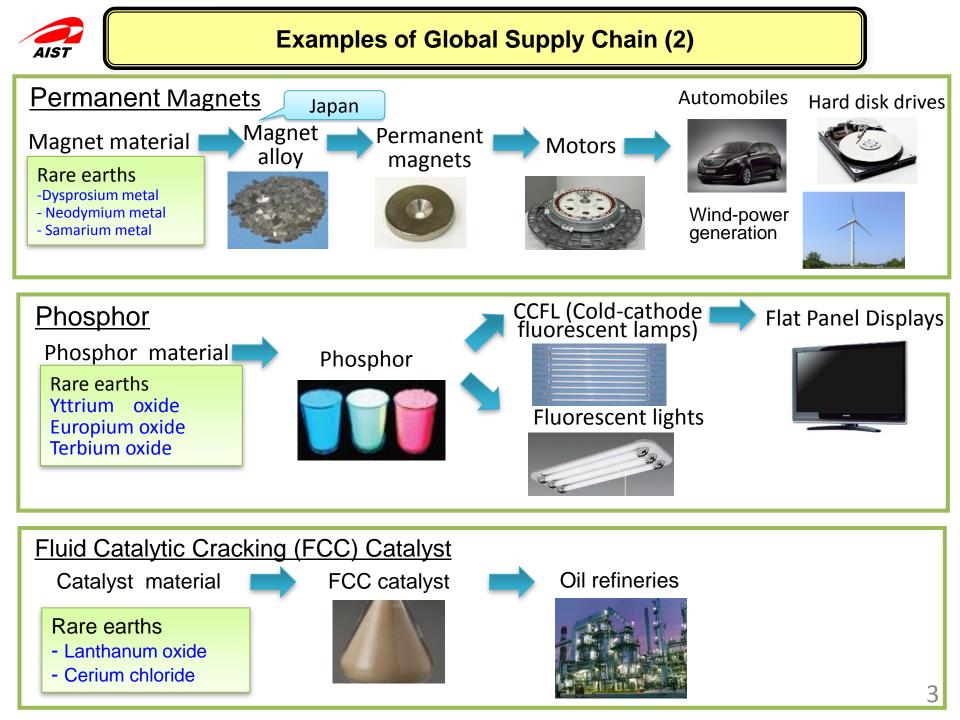


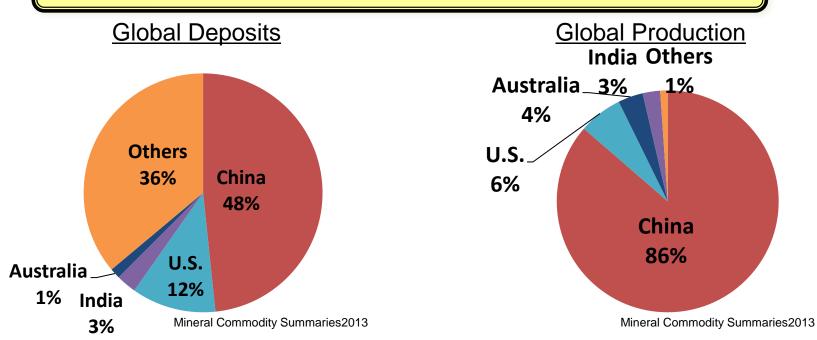
Approach to rare earths issues

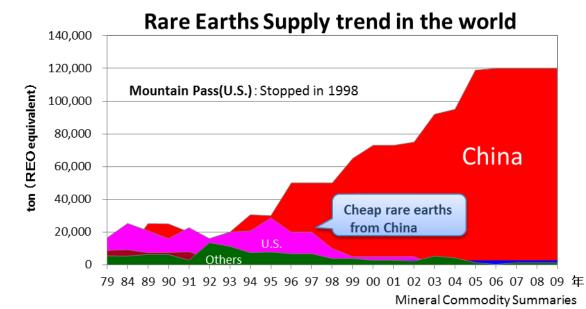
Tetsuichi Takagi

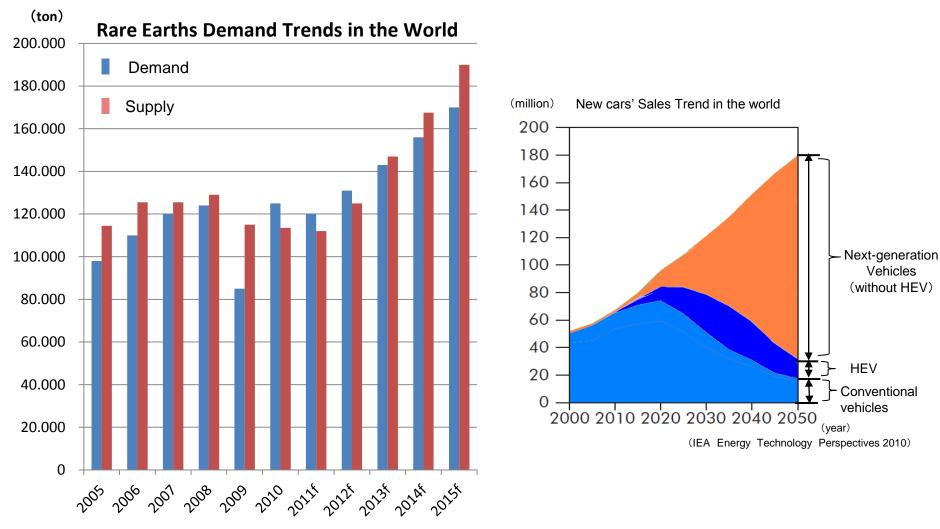
Leader, Mineral Resources Research Group, Institute for Geo-Resources and Environment National Institute of Advanced Industrial Science and Technology


What is "Rare Earths" ?

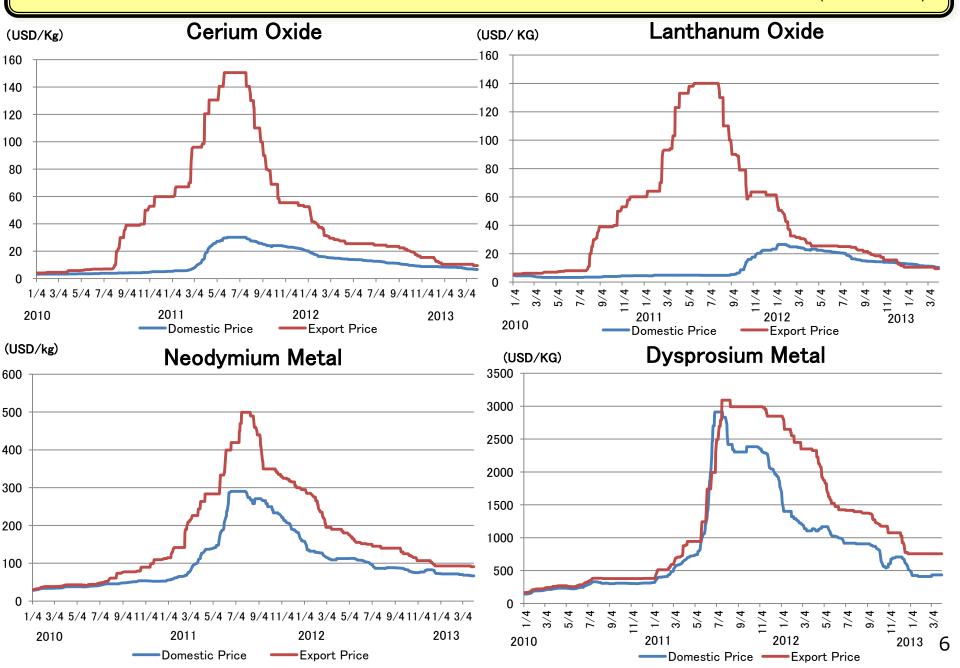
1	1	į		Rar	e Met	als		Rare	Earth	าร	I						18 2
H 1.008	2					ale		i tai o	Laiti		 	13	14	15	16	17	Не 4.0026
3 Li 6.94	4 Be 9.0122											5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 A1 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.63	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 S1 87.62	39 Y 88.906	40 Z1 91.224	41 Nb 92.906	42 Mo 95.96	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 T1 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Uut (284)	114 Fl (289)	115 Uup (288)	116 Lv (293)	117 Uus (294)	118 Uuo (294)
	* 1 +	homida															
* Lanthanide series			57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97


➤The supply chain is integrated on a global scale.




Current Situation on Rare Earths

The demand for rare earths is expected to increase due to the popularization of hybrid vehicles, electric vehicles and wind-power generation.



(Industrial Minerals Company of Australia)

(Year)

The prices of Rare Earths

(Asian Metal)

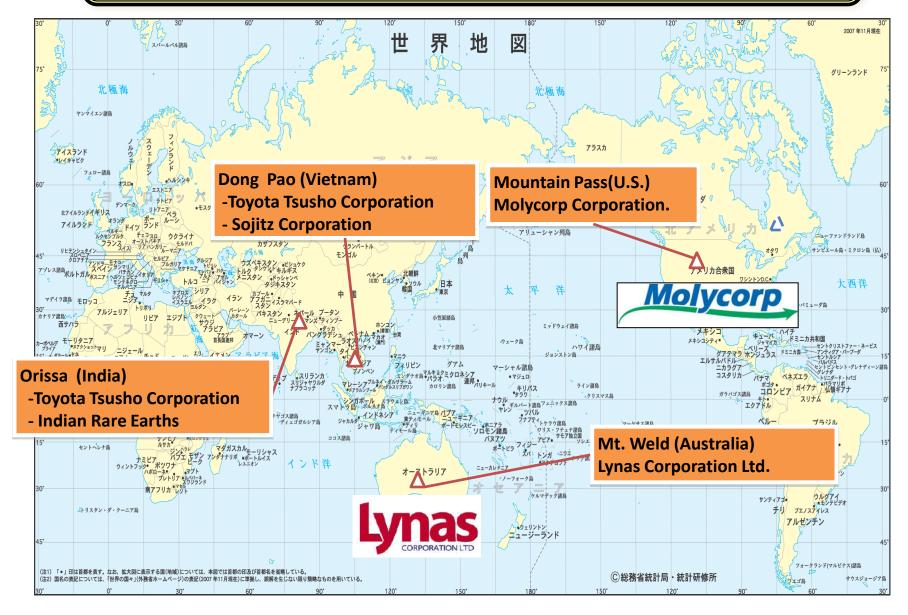
Rare earths consuming countries need to take the following measures, "ABCD+R".

Alternatives : use substitute materials

Broader international cooperation

Conservation : Reducing resource use

Diversifying supply sources



FY 2010	*1USD = 100JPY						
1. Developmer reduce reso	Α	С					
	1						
	of introducing manufacturing facilities e and use of substitute materials	to reduce <u>US\$420 million</u>	A	С	R		
3. Diversifying resources	supply sources of rare earths and oth	er scarce <u>US\$460million</u>		C)		
FY 2011							
1. Developme	elopment of substitute materials and technologies to						
reduce reso	educe resource use US\$85million						
FY 2012							
1. Developme	1. Development of substitute materials and technologies to						
reduce resc	Α	С					

Global Rare Earths Projects

Diversifying supply sources

FY 2013

Development Rare Earth Free Motors

US\$30million A

As the first project of "the future development research system^{*}", they develop the Rare Earth Free Magnets through the industry-university-public cooperation. As for the motors, they design and product trial manufactures to develop the motors which can reduce a energy-loss by 25%.

* the future development research system; Japan promotes the project which need more than 10 years to turn to practical use.

Development of substitute materials and technologies to reduce resource use US\$8.2million

R

Establishment of the sustainable recycle route and technology of dismantling. Recycle the motors for air-conditioners and vehicles.

- It is expected that demand for rare earths will increase with the popularization of hybrid electric vehicles, electric vehicles, wind power generators, etc.
- It is important to share the correct understanding of the effects of rare earths issues on global industries throughout the supply chain.
- We need to achieve the sustainable Rare Earths industrial world for not only consuming countries but also resource countries through bilateral cooperation. Whole world should be blessed with Rare Earths.