

Propósitos das modificações genéticas, riscos ambientais e ação dos genes de restrição da reprodução em plantas.

Robinson Antonio Pitelli

Unesp, Jaboticabal

As preocupações ambientais com as plantas geneticamente modificadas devem ser focadas

- O impacto do novo genótipo introduzido. É um risco que ocorre sempre que novos gens são introduzidos num novo ambiente, seja por organismos transgênicos, seja por plantas exóticas.
- O impacto da nova tecnologia em condições de campo em consequência do novo produto que será introduzido (planta geneticamente modificada, no caso).

Os riscos ambientais de plantas geneticamente modificadas dependem

- Da espécie cultivada que foi submetida à modificação genética
- Do propósito da modificação genética
- Do ambiente de liberação do organismo geneticamente modificado

A domesticação das plantas cultivadas

Antes

Perfil genético da populaç

Desuniformidade do florescimento

Desuniformidade de floração

Escalonamento do processo germinativo

Dispersão espontânea das sementes

Dormência das sementes

Estrutura de crescimento adaptado à competição interespecífica

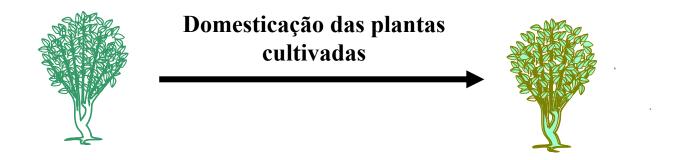
Plasticidade fenotítipica ao nível de indivíduo

Depois

rfil genético da população

Enfim, a domesticação da planta cultivada

- Reduziu o contingente genético das populações
- Algumas vezes, impôs barreiras ao cruzamento com ancestrais selvagens
- Retirou as mais importantes características de rusticidade e agressividade
- Reduziu a plasticidade fenotípica ao nível de indivíduo



• Reduz drasticamente a capacidade da planta sobreviver no ambiente por seus próprios atributos

Da espécie cultivada que foi submetida à modificação genética

• Em outras palavras

Eliminou suas características de agressividade e de rusticidade

Tornou-as altamente dependente da tutoria do homem para manter suas populações na natureza

Há diferentes graus de domesticação das plantas que são cultivadas atualmente

- Soja
- Milho
- Trigo
- Aveia
- Amendoim
- Sorgo
- Cenoura
- Canola
- Pastagens

A possibilidade de que uma planta cultivada supere as limitações impostas pela domesticação e readquira o caráter invasor (ou de colonização espontânea sem a tutela do homem) pelo simples fluxo gênico intra-específico com origem em plantas geneticamente modificadas para qualquer propósito é

- (i) extremamente remota para plantas com alto grau de domesticação e
- (ii) remota para plantas ainda em processo de eliminação das características de rusticidade que impedem o perfeito controle sobre os processos produtivos

Os riscos ambientais de plantas geneticamente modificadas dependem

- Da espécie cultivada que foi submetida à modificação genética
- Do propósito da modificação genética
- Do ambiente de liberação do organismo geneticamente modificado

Do propósito da modificação genética

- Tolerância a substâncias xenobióticas, como herbicidas.
- Tolerância a pressões bióticas, como insetos, fungos, ...
- Tolerância a pressões abióticas como toxidez de elementos químicos, deficiência ou excesso de umidade,....

Vamos constituir alguns cenários

No caso de fluxo gênico a partir de plantas transformadas para tolerância à herbicidas

✓ Duas situações distintas

1. Planta infestante de agroecossistemas

- Consequência: redução drástica da eficácia de controle pelo herbicida
 - Volta às práticas e variedades anteriores
 - Rotação de culturas ou de variedades
 - Integração de métodos de controle

No caso de fluxo gênico a partir de plantas transformadas para tolerância à herbicidas

2. Planta silvestre que apenas coloniza ambientes naturais

- Consequência: o herbicida não constitui pressão de seleção e a nova constituição genética não trará qualquer vantagem adaptativa para a planta.
- Risco de qualquer conseqüência é muito baixo.

No caso de fluxo gênico a partir de plantas com transformação genética para resistência a insetos e doenças

1. Planta infestante de agroecossistemas

- Conseqüência: menor pressão de predação pelos artrópodes e parasitas
- Previsão:
 - para as áreas agrícolas ► efeito negligenciável já que será controlada como plantas daninhas
 - Caso atinja áreas silvestres ➤ plantas tipicamente R e
 C-R têm baixa competitividade e dificilmente se
 estabelecerão ➤ risco muito baixo

No caso de fluxo gênico a partir de plantas com transformação genética para resistência a insetos e doenças

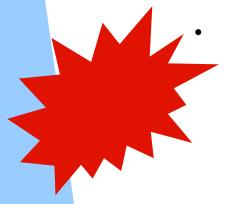
2. Planta silvestre que apenas coloniza ambientes naturais

- Consequência: a planta terá vantagem competitiva e terá sua importância relativa aumentada na comunidade vegetal da área.
 - Vantagem competitiva será temporária já que deverá ocorrer co-evolução do predador ou parasita.
 - Com a adaptação das populações de predadores ou parasitas à toxina, a planta silvestre geneticamente modificada perderá a vantagem competitiva e a sua importância relativa na comunidade deverá cair.

No caso de fluxo gênico a partir de plantas com transformação genética para resistência a fatores abióticos

1. Planta infestante de agroecossistemas

- Conseqüência: menor susceptibilidade às limitações impostas pelo biótopo
- Previsão:


- para as áreas agrícolas ➤ poderá atingir áreas agrícolas novas ➤ o controle das plantas daninhas poderá minimizar o problema, mas passará a ser habitante natural do novo sistema
- Caso atinja áreas silvestres ▶ deverão se estabelecer definitivamente, caso o fator ecológico para o qual se tornou menos susceptível fosse o seu fator limitante.

No caso de fluxo gênico a partir de plantas com transformação genética para resistência a fatores abióticos

2. Planta silvestre que apenas coloniza ambientes naturais

- Consequência: menor susceptibilidade às limitações impostas pelo biótopo
- Previsão:

A planta poderá colonizar outros locais aumentando definitivamente sua área de distribuição geográfica. No começo sua capacidade invasora será elevada, mas deverá diminuir com a co-evolução de seus inimigos naturais.

Os riscos ambientais de plantas geneticamente modificadas dependem

- Da espécie cultivada que foi submetida à modificação genética
- Do propósito da modificação genética
- Do ambiente de liberação do organismo geneticamente modificado

Do ambiente de liberação do organismo geneticamente modificado

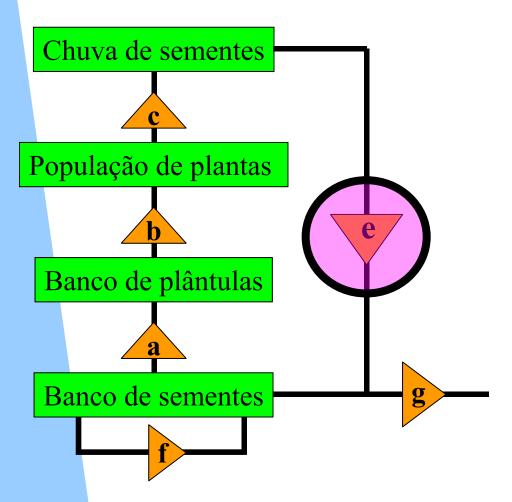
- Se o local da liberação é centro de diversificação da espécie ou não (nativa ou exótica)
- Existência e proximidade de plantio de raças locais
- Grau de desenvolvimento da agricultura ou nível do agricultor
- Outras ...

Nestes contextos, qual seria a consequência da introdução de um gene de restrição à reprodução seminífera

Provocar a eliminação de populações nativas

Componentes de estrutura etária de plantas monocárpicas (Ruderais)

Banco de diásporos


Banco de plântulas

População da plantas adultas

Chuva de diásporos

Diagrama demográfico de uma planta monocárpica

f= % de sementes que sobreviveram de um ano para outro

a= % de sementes que emergiram como plântulas

b= % de plântulas que tornaram plantas adultas

c= % (número) de sementes produzidas por indivíduo adulto

e= % de sementes que foram depositadas localmente no solo

g= % de variação do banco de sementes de um ano para outro

Tabela de vida determinada para uma população de *Acanthospermum hispidum*

Com estas dados são realizados cálculos que nos permite inferir sobre

ra pragas

Trounguo	Tradição de permemos por marvidas em edad epoca					Índice de		
emergência			com	Sementes	por planta	sobrevivência		
(x)	Plantas	Sementes	GURT	viáveis	(dx)	(ix)	dx*lx	dx.ix.x
0	157	0	0	0	0	1,0	0,0	0,0
10	156	0	0	0	0	1,0	0,0	0,0
20	150	0	0	0	0	1,0	0,0	0,0
30	143	0	0	0	0	0,9	0,0	0,0
40	140	1680	0	1680	12	0,9	10,7	428,0
50	134	4556	0	4556	34	0,9	29,0	1451,0
60	133	19950	0	19950	150	0,8	127,1	7624,2
70	130	29900	0	29900	230	0,8	190,4	13331,2
80	122	25864	0	25864	212	0,8	164,7	13179,1
90	119	19873	0	19873	167	0,8	126,6	11392,2
100	103	17098	0	17098	166	0,7	108,9	10890,4
110	92	19504	0	19504	212	0,6	124,2	13665,2
120	87	17487	0	17487	201	0,6	111,4	13365,9
130	78	14742	0	14742	189	0,5	93,9	12206,8
140	49	8183	0	8183	167	0,3	52,1	7296,9
150	44	3652	0	3652	83	0,3	23,3	3489,2
160	12	300	0	300	25	0,1	1,9	305,7
170	9	18	0	18	2	0,1	0,1	19,5
180	0	0	0	0	0	0,0	0,0	0,0
Total							1164,4	108645,3

Capacidade de aumento da população em uma geração 11,6 vezes

Tempo para reposição da população 93 dias

Tabela de vida determinada para uma população de *Acanthospermum hispidum* com 10% de contaminação com "Terminator, entre 60 e 130 dias do ciclo.

Dias apó emergêno			Contaminação com	Sementes	Sementes por planta	Índice de sobrevivência		
(x)	Plantas	Sementes	GURT	viáveis	(dx)	(ix)	dx*lx	dx.ix.x
0	157	0		0	0	1,00	0,0	0,0
10	156	0		0	0	0,99	0,0	0,0
20	150	0		0	0	0,96	0,0	0,0
30	143	0		0	0	0,91	0,0	0,0
40	140	1680		1680	12	0,89	10,7	428,0
50	134	4556		4556	34	0,85	29,0	1451,0
60	133	19950	10	17955	135	0,85	114,4	6861,8
70	130	29900	10	26910	207	0,83	171,4	11998,1
80	122	25864	10	23277,6	190,8	0,78	148,3	11861,2
90	119	19873	10	17885,7	150,3	0,76	113,9	10252,9
100	103	17098	10	15388,2	149,4	0,66	98,0	9801,4
110	92	19504	10	17553,6	190,8	0,59	111,8	12298,7
120	87	17487	10	15738,3	180,9	0,55	100,2	12029,3
130	78	14742	10	13267,8	170,1	0,50	84,5	10986,1
140	49	8183		8183	167	0,31	52,1	7296,9
150	44	3652		3652	83	0,28	23,3	3489,2
160	12	300		300	25	0,08	1,9	305,7
170	9	18		18	2	0,06	0,1	19,5
180	0	0		0	0	0,00	0,0	0,0
"Total							1059,7	99079,8

Capacidade de aumento da população em uma geração 10,59 vezes

Tempo para reposição da população 93 dias

Tabela de vida determinada para uma população de *Acanthospermum hispidum* com 10% de contaminação com "Terminator, durante todo o ciclo de florescimento

Dias após emergência			Contaminação com	Sementes	Sementes por planta	Índice de sobrevivência		
(x)	Plantas	Sementes	GURT	viáveis	(dx)	(ix)	dx*lx	dx.ix.x
0	157	0		0	0	1,00	0,0	0,0
10	156	0		0	0	0,99	0,0	0,0
20	150	0		0	0	0,96	0,0	0,0
30	143	0		0	0	0,91	0,0	0,0
40	140	1680	10	1512	10,8	0,89	9,6	385,2
50	134	4556	10	4100,4	30,6	0,85	26,1	1305,9
60	133	19950	10	17955	135	0,85	114,4	6861,8
70	130	29900	10	26910	207	0,83	171,4	11998,1
80	122	25864	10	23277,6	190,8	0,78	148,3	11861,2
90	119	19873	10	17885,7	150,3	0,76	113,9	10252,9
100	103	17098	10	15388,2	149,4	0,66	98,0	9801,4
110	92	19504	10	17553,6	190,8	0,59	111,8	12298,7
120	87	17487	10	15738,3	180,9	0,55	100,2	12029,3
130	78	14742	10	13267,8	170,1	0,50	84,5	10986,1
140	49	8183	10	7364,7	150,3	0,31	46,9	6567,2
150	44	3652	10	3286,8	74,7	0,28	20,9	3140,3
160	12	300	10	270	22,5	0,08	1,7	275,2
170	9	18	10	16,2	1,8	0,06	0,1	17,5
180	0	0		0	0	0,00	0,0	0,0
Total							1047,9	97780,8

Capacidade de aumento da população em uma geração 10,47 vezes

Tempo para reposição da população 93 dias

Consequências do gene de restrição reprodutiva em vários eventos de transformação

- Resistências a substâncias xenobióticas, como herbicidas
 - Fluxo intra-específico ► arroz arroz-vermelho ► inviabiliza a formação do biótipo selvagem resistente ► vantagem da tecnologia,
 - mantém a vida útil da variedade e
 - reduz os bancos de sementes para o agricultor
 - Fluxo inter-específico ► inviabiliza o desenvolvimento de populações de plantas daninhas e silvestres resistentes
 - mantém a vida útil da variedade
 - Não evita a seleção de flora devida exclusivamente ao herbicida como pressão de seleção, mas evita no caso de fluxo gênico

Consequências do gene de restrição reprodutiva em vários eventos de transformação

- Resistências a fatores bióticos do meio: insetos, doenças
 - Fluxo intra-específico ► arroz arroz-vermelho ► inviabiliza a formação do biótipo resistente ► vantagem da tecnologia,

 - Se houver grande coincidência de ciclo e alta taxa de fertilização cruzada em espécies silvestres, medidas mitigatórias devem ser tomadas, para impedir reduções nos bancos de sementes das populações selvagens ▶ as mesmas medidas sugeridas para contenção de fluxo gênico

Consequências do gene de restrição reprodutiva em vários eventos de transformação

- Resistências a fatores abióticos do meio: seca, salinidade, baixa aeração do solo
 - Fluxo intra-específico ► inviabiliza a formação do biótipo selvagem resistente ► vantagem da tecnologia,
 - Fluxo inter-específico ► inviabiliza o desenvolvimento de populações de plantas daninhas ou plantas selvagens que poderão aumentar suas áreas de distribuição geográfica ► vantagem da tecnologia

Conclusões

- Excluindo aspectos relacionados a efeitos pleiotrópicos afetando outras características da plantas, especialmente as bromatológicas e toxicológicas
- Excluindo interesses políticos, sociais e comerciais de produtos com estas características agrícolas. Conclue-se que:
 - O impacto ambiental deste novo genótipo cou de suas tecnologia ao nível de campo, produz efeitos negligenciáveis do ponto de vista das dinâmicas de populações e de comunidades vegetais
 - Em altas taxas de fertilização cruzada e coincidência de ciclo de florescimento, o fluxo gênico poderia ter um efeito importante ► aspecto bastante raro e de mitigação relativamente simples

Muito Obrigado

Robinson Antonio Pitelli

rapitelli @ ecosafe.agr.br