Construindo Cidades Inteligentes

da <u>Instrumentação dos Ambientes</u> ao Desenvolvimento de <u>Aplicações</u> Marcelo Sampaio de Alencar

Urbanização: dos primórdios ao século XXI

- Agricultura (surgiu há pelo menos 10.000 anos): Durante milhares de anos as pessoas viveram em zonas rurais
 - Trabalhavam em fazendas e vilarejos
 - Sabiam pouco do mundo além do círculo familiar e vizinhos
- Aos poucos surgiram as pequenas comunidades
- Século XX: a população nas cidades cresceu por um fator de 10 (de 250 milhões para 2,8 bilhões de habitantes)
- 2008: a população urbana superou 50% da total

As cidades no futuro: projeções

- Em 2050 a população mundial deverá ultrapassar 9 bilhões de pessoas
 - □ População urbana atingirá 6 bilhões de pessoas
- Evolução da urbanização prevista por continente

	2009	2050
América do Sul	84 %	92 %
América Central	72 %	84 %
América do Norte	82 %	90 %
África	40 %	62 %
Europa	73 %	84 %
Ásia	42 %	65 %
Oceania	70 %	75 %

Qualidade de vida nas cidades

 As cidades são fontes de crimes, poluição, doenças, entre outros males

Congestionamento de tráfego veicular

Desperdício de Tempo Se 500 milhões de pessoas se deslocaram de carro por dia, e cada pessoa perder 2 minutos em congestionamento: por ano são desperdiçados 700.000 anos no total

Desperdício/ano (em 2010) - Los Angeles: 64 horas por motorista;

- Chicago: 71 horas por motorista.

<u>Desperdício de Recursos</u> Cerca de 200 milhões de litros de gasolina e álcool e 4 bilhões de litros de diesel por ano nos congestionamentos de trânsito na cidade de São Paulo

Por que não utilizar os recursos tecnológicos em favor das cidades?

- Estudos recentes demonstram que, em média, à medida que crescem, as grandes cidades geram mais prosperidade econômica e inovação per capita do que cidades menores
- Por que em ambientes urbanos não se utilizam os recursos produzidos de forma inteligente?
- Uma <u>cidade inteligente</u> utiliza tecnologia para transformar a sua infraestrutura básica e otimizar o uso de energia e de outros recursos

Cidades Inteligentes: conceito e desafios

- Ideia básica: criação de espaços urbanos ambientalmente balanceados para que
 - Pessoas possam trabalhar e ter serviços oferecidos pela infraestrutura urbana que satisfaçam razoavelmente suas necessidades e desejos

Alguns desafios:

- Desenvolvimento de uma teoria preditiva e quantitativa para a organização urbana e para o desenvolvimento sustentável
- Preocupação com as mudanças climáticas
- Viabilização de fontes de energia em longo prazo

Cidade inteligente: sistema de sistemas

Camada de fornecedores e usuários de serviços

Usuários finais, grupos de usuários, funcionários

Camada de serviços

Portais Web, engenhos de busca, serviços via Web, serviços geo-espaciais, serviços geo-referenciados

Camada de gerência da cidade inteligente Arquitetura, políticas, regras operacionais.

Camada da infraestrutura

Rede óptica metropolitana (núcleo), rede óptica passiva de acesso (PON), rede Wi-MAX, redes Wi-Fi, sistemas de informação, *call centers*, redes locais para acesso comunitário

Camada de informação

Dados públicos e privados criados e armazenados, centros de armazenagem, armazenagem móvel, repositórios de redes sociais

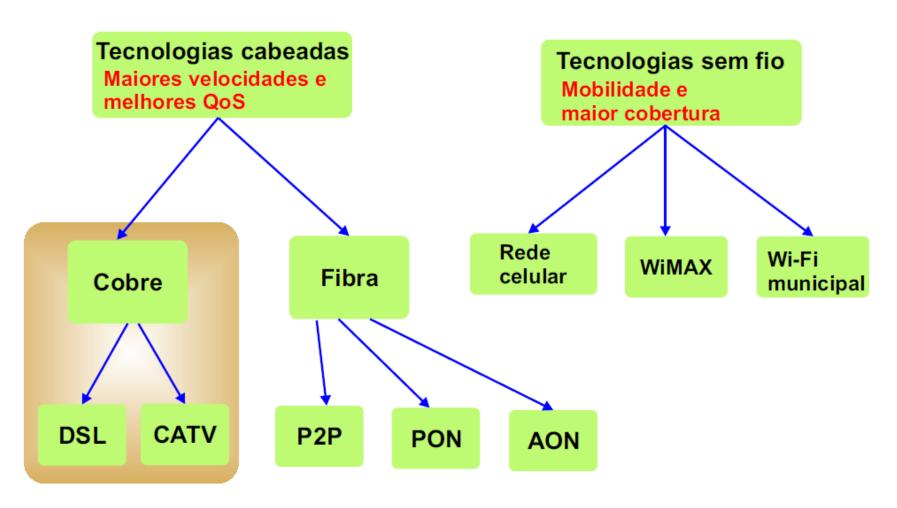
A arquitetura depende das prioridades da cidade

Centro de Operações no Rio de Janeiro

Motivação: Catástrofe humana e ambiental em 2010, Copa do Mundo FIFA 2014, Jogos Olímpicos em 2016

Investimentos e Resultados Esperados:

- Infraestrutura avançada de TICs
- Decisões coordenadas e inteligentes baseadas em dados de sensores, câmeras de vídeo e pessoal em campo
- Gerência adequada de desastres e emergências
- Evolução do sistema para integração de dados e sistemas de transporte, edifícios, distribuição de energia e água e outros sistemas


Infraestrutura de Comunicações

Ambientes de cidades inteligentes: redes de acesso para prover comunicação capilarizada a altas taxas

- Podem utilizar redes ópticas passivas (PONs): são hoje uma realidade para milhões de usuários em dezenas de países
- Dezembro de 2010: mais de 50 milhões de assinantes FTTH
- Redes de acesso atualmente: consolidadas em TDM-PON (1ª geração)
- 2ª Geração: redes ponto-a-ponto, por meio do uso da tecnologia WDM



Tecnologias Cabeadas e Sem Fio

Alternativas para Redes de Acesso


Redes de Acesso de Faixa Larga Híbridas Óptico - Sem Fio (WOBANs)

Estrutura geral: backbone óptico e interface sem fio

- Apresentam diversos pontos positivos:
 - Uso da infraestrutura PON já disponível
 - Mobilidade e comodidade da rede sem fio
 - Integração do conceito "Internet em qualquer lugar"
 - Eliminação dos custos de cabeamento de última milha

Arquitetura WOBAN baseada em PON

Projeto [CIA]²

Objetivos: Construção de uma infraestrutura de instrumentação, informática e comunicação para viabilizar as Cidades Inteligentes

Possibilitar o suporte a uma melhor gestão pública e do meio ambiente e agregando valor ao cidadão

Duração do projeto: 2011 – 2013

Financiamento: Ministério de Ciência e Tecnologia; Rede Nacional de Ensino e Pesquisa; Centro de Pesquisa e Desenvolvimento em Tecnologias Digitais para Informação e Comunicação.

Rede de colaboração do projeto [CIA]²

Instituições:

IECOM

UFAL

UFF

UFMG

UFPA

UFRJ

UFSC

UNB

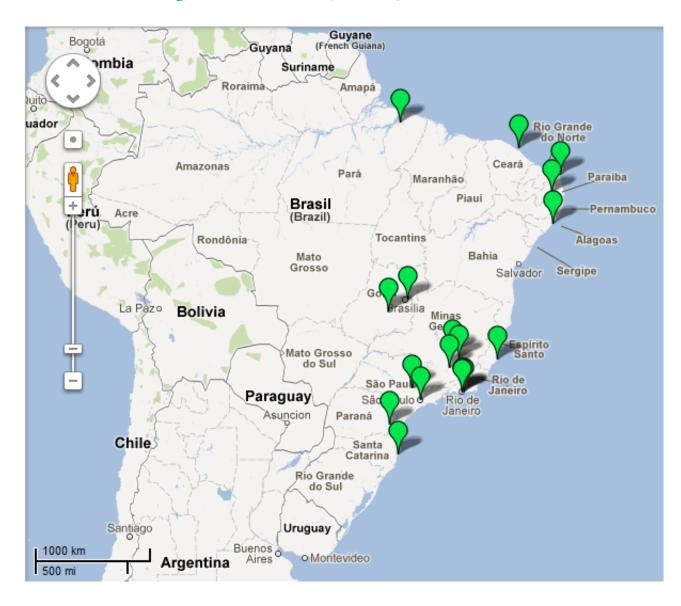
UNIFOR

PUC-RIO

UFES

UFG

UFOP


UFPR

UFRN

UFSJ

UNICAMP

USP

O projeto é dividido em grupos (metas)

[AMB]: Ambiente de Experimentação Remota de IoT

[IOT]: Protocolos de Comunicação Alternativos para IoT

[WOT]: Integração de Sensores via Web

[CON]: Convergência Tecnologias de Comunicações sem Fio

[VER]: Tecnologias de Comunicação Verdes

[CDT]: Coleta e Disseminação de Dados de Tráfego Urbano

[ADC]: Armazenamento e Disseminação de Dados Climáticos

[RIO]: Monitoração de Rios Urbanos

Termos gerais de abrangência do [CIA]²

- Aquisição dos dados urbanos brutos por tecnologias de redes de sensores e Internet das coisas, comunicação, armazenamento, e acesso a esses dados por meio de diferentes tecnologias e protocolos de redes sem fio
- Construção de aplicações que se beneficiem dessa infraestrutura

Para mais informações sobre o [CIA]²

www.nr2.ufpr.br/~cia2